
Employing a Reconfigurable Virtual Networking
Approach by using NICE Mechanism

A.JensilinMary.M.E , E.SathishKumar , S.NavinChander , R.Naveenkumar , A.Prasanth

Department of Information Technology

SKP Engineering College, Tiruvannamalai-606611, TamilNadu

Abstract-Today’s world moving around cloud computing
technology ,the cloud computing plays a major role in all
organizations this is because of its property like
computability, cost efficiency ,availability etc.. The cloud
computing had more advantage however it also have some
security defect, In the cloud server detection of zombie
exploration attacks is extremely difficult, due to this the cloud
user can able to install harmful applications into their virtual
server to attack the virtual server.
In this paper we provide Reconfigurable virtual network
approach by using Network Intrusion Detection and
Countermeasure selection algorithm ,this algorithm prevent
harmful attack of virtual network system by the user .In this
method, using attack analyzer we analyze the vulnerability of
the application which is uploaded and downloaded by the
cloud user if the application is harmful to the virtual network
system the analyzer will restrict the application ,it works like
bridge between the distributed virtual network system in
order to significantly improve attack detection and mitigate
attack consequences. The data efficiency and the security of
the cloud computing is improved effectively.

I.INTRODUCTION
In Recent studies have shown that users migrating to the cloud
consider security as the most important factor. A recent Cloud
Security Alliance (CSA) survey shows using of cloud computing
is considered as the top security threat, in which attackers can
exploit vulnerabilities in clouds and utilize cloud system resources
to attack it. In data centers, the system administrators have full
control over the host system, defect can be detected and rectified
by the system administrator. However, rectifying known security
holes in cloud server, where cloud users usually have the rights to
control software installed on their managed VMs, may not work
properly and can affects the Service Level Agreement (SLA).
Furthermore, cloud users can install vulnerable software on their
VMs, which leads to loopholes in security. The difficult is to
establish an effective vulnerability/attack detection and response
system for accurately identifying attacks and minimizing the
impact of security breach to cloud users. In, M. Armbrust et al.
addressed that protecting”Business continuity and services
availability” from service outages is one of the top concerns in
cloudComputing systems.
In a cloud system where the infra structure is shared by potentially
many users attacked by use of the shared infrastructure benefits
attackers to exploit vulnerabilities of the cloud and use its
resource to deploy attacks in more efficient ways . Such attacks
are more effective in the cloud environment since cloud users
usually share computing resources, e.g., sharing the same data and
file systems, even with attackers. The same setup for VMs in the
cloud, e.g., virtualization method, VM OS, installed harmful
software, networking, etc., attracts attackers to attack multiple
VMs. In this article, we propose NICE (Network Intrusion
detection and Counter measures Election in virtual network
systems) to establish a defense-in-depth intrusion detection. For

attack detection, NICE uses attack graph analytical procedures
into the intrusion detection processes. NICE employs a
reconfigurable virtual networking approach to detect and counter
the attempts to attack VMs, that preventing zombie VMs.
In general, NICE includes two main phases: (1) deploya
lightweight mirroring-based network intrusion detection agent
(NICE-A) on each cloud server to capture and analyze cloud
traffic. A NICE-A repeatedly scans the virtual system
vulnerabilities within a cloud server to establish Scenario Attack
Graph (SAGs), and then based on the severity of identified
vulnerability. (2) Once a VM enters inspection state, (DPI) Deep
Packet Inspection is applied, virtual network reconfigurations can
be deployed to the inspecting VM to make the potential attack
behaviors prominent.

II.PROPOSED SYSTEM
In this article, we propose NICE (Network Intrusion detection and
Countermeasure selection in virtual network systems) to establish
a defense-in-depth intrusion detection framework. For better
attack detection, NICE incorporates attack graph analytical
procedures into the intrusion detection processes. We must note
that the design of NICE does not intend to improve any of the
existing intrusion detection algorithms; indeed, NICE employs a
reconfigurable virtual networking approach to detect and counter
the attempts to compromise VMs, thus preventing zombie VMs.

Advantage of proposed system
• The contributions of NICE are presented as follows:
• We devise NICE, a new multi-phase distributed network

intrusion detection and prevention framework in a virtual
networking environment that captures and inspects
suspicious cloud traffic without interrupting users’
applications and cloud services.

• NICE incorporates a software switching solution to
quarantine and inspect suspicious VMs for further
investigation and protection. Through programmable
network approaches, NICE can improve the attack detection
probability and improve the resiliency to VM exploitation
attack without interrupting existing normal cloud services.

• NICE employs a novel attack graph approach for attack
detection and prevention by correlating attack behavior and
also suggests effective countermeasures.

NICE optimizes the implementation on cloud servers to minimize
resource consumption. Our study shows that NICE consumes less
computational overhead compared to proxy-based network
intrusion detection solutions.

III.EXISTING SYSTEM
Cloud users can install vulnerable software on their VMs, which
essentially contributes to loopholes in cloud security. The
challenge is to establish an effective vulnerability/attack detection
and response system for accurately identifying attacks and
minimizing the impact of security breach to cloud users. In a
cloud system where the infrastructure is shared by potentially

A.JensilinMary et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1333-1337

www.ijcsit.com 1333

millions of users, abuse and nefarious use of the shared
infrastructure benefits attackers to exploit vulnerabilities of the
cloud and use its resource to deploy attacks in more efficient
ways. Such attacks are more effective in the cloud environment
since cloud users usually share computing resources, e.g., being
connected through the same switch, sharing with the same data
storage and file systems, even with potential attackers. The similar
setup for VMs in the cloud, e.g., virtualization techniques, VM
OS, installed vulnerable software, networking, etc., attracts
attackers to compromise multiple VMs.

Disadvantage of exiting system:
• No detection and prevention framework in a virtual

networking environment.
• Not accuracy in the attack detection from attackers.

IV.SYSTEM MODULES
Nice-A
 The NICE-A is a Network-based Intrusion Detection
System (NIDS) agent installed in each cloud server. It scans the
traffic going through the bridges that control all the traffic among
VMs and in/out from the physical cloud servers. It will sniff a
mirroring port on each virtual bridge in the Open vSwitch. Each
bridge forms an isolated subnet in the virtual network and
connects to all related VMs. The traffic generated from the VMs
on the mirrored software bridge will be mirrored to a specific port
on a specific bridge using SPAN, RSPAN, or ERSPAN methods.
It’s more efficient to scan the traffic in cloud server since all
traffic in the cloud server needs go through it; however our design
is independent to the installed VM. The false alarm rate could be
reduced through our architecture design.
VM Profiling
Virtual machines in the cloud can be profiled to get precise
information about their state, services running, open ports, etc.
One major factor that counts towards a VM profile is its
connectivity with other VMs. Also required is the knowledge of
services running on a VM so as to verify the authenticity of alerts
pertaining to that VM. An attacker can use port scanning program
to perform an intense examination of the network to look for open
ports on any VM. So information about any open ports on a VM
and the history of opened ports plays a significant role in
determining how vulnerable the VM is. All these factors
combined will form the VM profile. VM profiles are maintained
in a database and contain comprehensive information about
vulnerabilities, alert and traffic.
Attack Analyzer
The major functions of NICE system are performed by attack
analyzer, which includes procedures such as attack graph
construction and update, alert correlation and countermeasure
selection. The process of constructing and utilizing the Scenario
Attack Graph (SAG) consists of three phases: information
gathering, attack graph construction, and potential exploit path
analysis. With this information, attack paths can be modeled using
SAG. The Attack Analyzer also handles alert correlation and
analysis operations. This component has two major functions: (1)
constructs Alert Correlation Graph (ACG), (2) provides threat
information and appropriate countermeasures to network
controller for virtual network reconfiguration. NICE attack graph
is constructed based on the following information: Cloud system
information, Virtual network topology and configuration
information, Vulnerability information
Network Controller
The network controller is a key component to support the
programmable networking capability to realize the virtual network
reconfiguration. In NICE, we integrated the control functions for
both OVS and OFS into the network controller that allows the
cloud system to set security/filtering rules in an integrated and

comprehensive manner. The network controller is responsible for
collecting network information of current Open Flow network and
provides input to the attack analyzer to construct attack graphs. In
NICE, the network control also consults with the attack analyzer
for the flow access control by setting up the filtering rules on the
corresponding OVS and OFS. Network controller is also
responsible for applying the countermeasure from attack analyzer.
Based on VM Security Index and severity of an alert,
countermeasures are selected by NICE and executed by the
network controller.

Algorithm 1 Alert Correlation
Require: alert ac, SAG, ACG
1: if (ac is a new alert) then
2: create node ac in ACG
3: n1 ← vc∈map(ac)
4: for all n2 ∈parent(n1) do
5: create edge (n2.alert, ac)
6: for all Si containing a do
7: if a is the last element in Si then
8: append ac to Si
9: else
10: create path Si+1 = {subset (Si, a), ac}
11: end if
12: end for
13: add ac to n1.alert
14: end for
15: end if
16: return S

V.SYSTEM DESIGN

In this section, we first present the system design overview of
NICE and then detailed descriptions of its component The
proposed NICE framework is illustrated in figure 1.It shows the
NICE framework within one cloud server cluster. Major
components in this framework are distributed and light-weighted
NICE-A on each physical cloud server, a network controller, a
VM profiling server, and an attack analyzer. The latter three
components are located in a centralized control center connected
to software switches on each cloud server (i.e., virtual switches
built on one or multiple Linux software bridges). NICE is a
software agent implemented in each cloud server connected to the
control center through a dedicated and isolated secure channel,
which is separated from the normal data packets using Open Flow
tunneling or VLAN approaches. The network controller is
responsible for deploying attack countermeasures based on
decisions made by the attack analyzer.
In the following description, our terminologies are based on the
XEN virtualization technology. NICE-A is a network intrusion

A.JensilinMary et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1333-1337

www.ijcsit.com 1334

detection engine that can be installed in either Dom0 or Dom U of
a XEN cloud server to capture and filter malicious traffic.
Intrusion detection alerts are sent to control center when
suspicious or anomalous traffic is detected. After receiving an
alert ,attack analyzer evaluates the severity of the alert based on
the attack graph, decides what countermeasure strategies to take,
and then initiates it through the network controller. An attack
graph is established according to the vulnerability information
derived from both offline and real time vulnerability scans.
Offline scanning can be done by running penetration tests and
online real time vulnerability scanning can be triggered by the
network controller (e.g., when new ports are opened and identified
by Open Flow switches) or when new alerts are generated by the
NICE-A. Once new vulnerabilities are discovered or
countermeasures are deployed, the attack graph will be
reconstructed. Countermeasures are initiated by the attack
analyzer based on the evaluation results from the cost-benefit
analysis of the effectiveness of countermeasures. Then, the
network controller initiates counter measure actions by
reconfiguring virtual or physical Open Flow switches.

VI.NICE SECURITY MEASUREMENT, ATTACK

MITIGATION AND COUNTERMEASURES
In this section, we present the methods for selectingthe
countermeasures for a given attack scenario. When vulnerabilities
are discovered or some VMs are identifiedas suspicious, several
countermeasures can be taken to restrict attackers’ capabilities and
it’s important todifferentiate between compromised and
suspicious VMs. The countermeasure serves the purpose of
1)protecting the target VMs from being compromised;
and2)making attack behavior stand prominent so that the
attackers’actions can be identified.
Security Measurement Metrics
The issue of security metrics has attracted much attention and
there has been significant effort in the development of quantitative
security metrics in recent years. Among different approaches,
using attack graph as the security metric model for the evaluation
of security risks [28] is a good choice. In order to assess the
network security risk condition for the current network
configuration, security metrics are needed in the attack graph to
measure risk likelihood. After an attack graph is constructed,
vulnerability information is included in the graph. For the initial
node or external node (i.e., the root of the graph, NR ⊆ND), the
priori probability is assigned on the likelihood of a threat source
becoming active and the difficulty of the vulnerability to be
exploited. We use GV to denote the priori risk probability for the
root node of the graph and usually the value of GV is assigned to a
high probability, e.g., from 0.7 to 1.
For the internal exploitation node, each attack-step node e ∈NC
will have a probability of vulnerability exploitation denoted as
GM[e]. GM[e] is assigned according to the Base Score (BS) from
CVSS (Common Vulnerability Scoring System). The base score
as shown in (1) [24], is calculated by the impact and exploitability
factor of the vulnerability. Base score can be directly obtained
from National Vulnerability Database [26] by searching for the
vulnerability CVE id.
BS = (0.6 × IV + 0.4 × E − 1.5) × f(IV), (1) where,
IV = 10.41 × (1 − (1 − C) × (1 − I) × (1 − A)),
E = 20 × AC × AU × AV,and
f(IV) = if IV = 0,

1.176 otherwise.
The impact value (IV) is computed from three basicparameters of
security namely confidentiality (C), integrity(I), and availability
(A). The exploitability (E) score consists of access vector (AV),
access complexity (AC), and authentication instances (AU). The
value of BS ranges from 0 to 10. In our attack graph, we assign

each internal node with its BS value divided by 10, as shown in
(2).
GM[e] = Pr(e = T) = BS(e)/10, ∀e ∈NC. (2)
In the attack graph, the relations between exploits can be
disjunctive or conjunctive according to howthey are related
through their dependency conditions [29]. Such relationships can
be represented as conditionalprobability, where the risk
probability of current node is determined by the relationship with
its predecessors and their risk probabilities. We propose the
following probability derivation relations:

• for any attack-step node n ∈NC with immediate predecessors set

W = parent(n),
Pr(n|W) = GM[n] ×s∈W
Pr(s|W); (3)

• for any privilege node n ∈ND with immediate
predecessors set W = parent(n), and then
Pr(n|W) = 1 −s∈W
(1 − Pr(s|W)). (4)
Once conditional probabilities have been assigned to all internal
nodes in SAG, we can merge risk values from all predecessors to
obtain the cumulative risk probabilityor absolute risk probability
for each node according to (5) and (6). Based on derived
conditional probability assignments on each node, we can then
derive an effective security hardening plan or a mitigation
strategy:

• for any attack-step node n ∈NC with immediate predecessor set
W = parent(n),
Pr(n) = Pr(n|W) *s∈W
Pr(s); (5)
• for any privilege node n ∈ND with immediate
predecessor set W = parent(n),
Pr(n) = 1 −s∈W
(1 − Pr(s)).(6)

Mitigation Strategies
Based on the security metrics defined in the previoussubsection,
NICE is able to construct the mitigation strategies in response to
detected alerts. First, we define the term countermeasure pool as
follows:
Definition (Countermeasure Pool).A countermeasurepool
CM = {cm1, cm2, . . . ,cmn} is a set of countermeasures. Each cm ∈CM is a tuple cm = (cost, intrusiveness, condition,
effectiveness), where
1. cost is the unit that describes the expenses required to apply the

countermeasure in terms of resources and operational
complexity, and it is defined in a range from 1 to 5, and
higher metric means higher cost;

2. intrusiveness is the negative effect that a countermeasure brings
to the Service Level Agreement (SLA) and its value ranges
from the least intrusive (1) to the most intrusive (5), and the
value of intrusiveness is 0 if the countermeasure has no
impacts on the SLA;

3. condition is the requirement for the corresponding
countermeasure;

4. effectiveness is the percentage of probability changes of the
node, for which this countermeasure is applied. In general,
there are many countermeasures that can be applied to the
cloud virtual networking system depending on available
countermeasure techniques that can be applied. Without
losing the generality, several common virtual-networking-
based countermeasures are listed in table 1. The optimal
countermeasure selection is a multi-objective optimization
problem, to calculate MIN(impact, cost) and MAX(benefit).

A.JensilinMary et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1333-1337

www.ijcsit.com 1335

In NICE, the network reconfiguration strategies mainly
involve two levels of action: layer-2 and layer-

3. At layer-2, virtual bridges (including tunnels that can be
established between two bridges) and VLANs

Main component in cloud’s virtual networking system toconnect
two VMs directly. A virtual bridge is an entity that attaches
Virtual Interfaces (VIFs). Virtual machines on different bridges
are isolated at layer 2. VIFs on the same virtual bridge but with
different VLAN tags cannot communicate to each other directly.
Based on this layer-2 isolation, NICE can deploy layer-2 network
reconfiguration to isolate suspicious VMs. For example,
vulnerabilities due to Arpspoofing [30] attacks are not possible
when the suspicious VM is isolated to a different bridge. As a
result, this countermeasure disconnects an attack path in the attack
graph causing the attacker to explore an alternate attack path.
Layer-3 reconfiguration is another way to disconnect an attack
path. Through the network controller, the flow table on each OVS
or OFS can be modified to change the network topology.
We must note that using the virtual network
reconfigurationapproach at lower layer has the advantage in that
upper layer applications will experience minimal impact.
Especially, this approach is only possible when using software-
switching approach to automate the reconfiguration in a highly
dynamic networking environment. Countermeasures such as
traffic isolation can be implemented by utilizing the traffic
engineering capabilities of OVS and OFS to restrict the capacity
and reconfigure the virtual network for a suspicious flow. When a
suspicious activity such as network and port scanning is detected
in the cloud system, it is important
to determine whether the detected activity is indeed malicious or
not. For example, attackers can purposely hide their scanning
behavior to prevent the NIDS from identifying their actions. In
such situation, changing the network configuration will force the
attacker to perform more explorations, and in turn will make their
attacking behavior stand out.
Countermeasure selection
Algorithm 2 presents how to select the optimal countermeasure
for a given attack scenario. Input to the algorithm is an alert,
attack graph G, and a pool of countermeasures CM. The algorithm
starts by selecting the node vAlert that corresponds to the alert
generated by a NICE-A. Before selecting the countermeasure,
wecount the distance of vAlert to the target node. If the distance is
greater than a threshold value, we do not perform countermeasure
selection but update the ACG to keep track of alerts in the system
(line 3). For the source node vAlert, all the reachable nodes
(including the source node) are collected into a set T (line 6).
Because the alert is generated only after the attacker has
performed the action, we set the probability of vAlertto 1 and
calculate the new probabilities for all of its child (downstream)
nodes in the set T (line 7 & 8). Now for all t ∈T the applicable
countermeasures in CM are selected and new probabilities are
calculated according to theeffectiveness of the selected
countermeasures (line 13 &14). The change in probability of
target node gives the benefit for the applied countermeasure using
(7). In the next double for-loop, we compute the Return of
Investment (ROI) for each benefit of the applied countermeasure
based on (8). The countermeasure which when applied on a node
gives the least value of ROI, is regarded as the optimal
countermeasure. Finally, SAG and ACG are also updated before
terminating the algorithm. The complexity of Algorithm 2 is O(|V
| × |CM|) where |V |is the number of vulnerabilities and |CM|
represents the number of countermeasures.

Algorithm 2 Countermeasure Selection
Require: Alert,G(E, V), CM
1: Let vAlert= Source node of the Alert
2: if Distance to Target(vAlert) > threshold then

3: Update ACG
4: return
5: end if
6: Let T = Descendant(vAlert) ∪vAlert
7: Set Pr(vAlert) = 1
8: Calculate Risk Prob(T)
9: Let benefit[|T|, |CM|] = ∅
10: for each t ∈T do
11: for each cm ∈CM do
12: if cm.condition(t) then
13: Pr(t) = Pr(t) ∗(1 − cm.effectiveness)
14: Calculate Risk Prob(Descendant(t))
15:benefit[t, cm] = ΔPr(target node). (7)
16: end if
17: end for
18: end for
19: Let ROI[|T|, |CM|] = ∅
20: for each t ∈T do
21: for each cm ∈CM do
22:
ROI[t, cm] =
benefit[t, cm]
cost.cm + intrusiveness.cm. (8)
23: end for
24: end for
25: Update SAG and Update ACG
26: return Select Optimal CM(ROI)

VII.PERFORMANCE EVALUATION
In this section we present the performance evaluation ofNICE.
Our evaluation is conducted in two directions: the security
performance, and the system computing and network
reconfiguration overhead due to introduced security mechanism.
Security Performance Analysis
To demonstrate the security performance of NICE, wecreated a
virtual network testing environment consisting of all the presented
components of NICE.
Environment and Configuration
To evaluate the security performance, a demonstrative virtual
cloud system consisting of public (public virtual servers) and
private (VMs) virtual domains is established as shown in Figure 3.
Cloud Servers 1 and 2 are connected to Internet through the
external firewall. In the Demilitarized Zone (DMZ) on Server 1,
there is one Mail server, one DNS server and one Web server.
Public network on Server 2 houses SQL server and NAT Gateway
Server. Remote access to VMs in the private network is controlled
through SSHD (i.e., SSH Daemon) from the NAT Gateway
Server. Table 2 shows the vulnerabilities present in this network
and table 3 shows the corresponding network connectivity that

A.JensilinMary et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1333-1337

www.ijcsit.com 1336

can be explored based on the identified vulnerabilities. Attack
Graph and Alert CorrelationThe attack graph can be generated by
utilizing network topology and the vulnerability information, and
it is shown in Figure 4. As the attack progresses, the system
generates various alerts that can be related to the nodes in the
attack graph.
Creating an attack graph requires knowledge of network
connectivity, running services and their vulnerability information.
This information is provided to the attack graph generator as the
input. Whenever a new vulnerability is discovered or there are
changes in the network connectivity and services running through
them, the updated information is provided to attack graph
generator and old attack graph is updated to a new one. SAG
provides information about the possible paths that an attacker can
follow. ACG serves the purpose of confirming attackers’ behavior,
and helps in determining false positive and false negative. ACG
can also be helpful in predicting attackers’ next steps.
Countermeasure Selection
To illustrate how NICE works, let us consider for example,an alert
is generated for node 16 (vAlert= 16) when the system detects
LICQ Buffer overflow. After the alert is generated, the cumulative
probability of node 16 becomes 1 because that attacker has
already compromised that node. This triggers a change in
cumulative probabilities of child nodes of node 16. Now the next
step is to select the countermeasures from the pool of
countermeasures CM. If the countermeasure CM4: create filtering
rules is applied to node 5 and we assume that this countermeasure
has effectiveness of85%, the probability of node 5 will change to
0.1164, which causes change in probability values of all child
nodes of node 5 thereby accumulating to a decrease of 28.5% for
the target node 1. Following the same approach for all possible
countermeasures that can be applied, the percentage change in the
cumulative probability of node 1, i.e., benefit computed using (7)
are shown in Figure 5. Apart from calculating the benefit
measurements, we also present the evaluation based on Return of
Investment(ROI) using (8) and represent a comprehensive
evaluation considering benefit, cost and intrusiveness of
countermeasure. Figure 6 shows the ROI evaluations for presented
countermeasures. Results show that countermeasures CM2
andCM8 on node 5 have the maximum benefit evaluation,
however their cost and intrusiveness scores indicate that they
might not be good candidates for the optimal countermeasure and
ROI evaluation results confirm this. The ROI evaluations
demonstrate that CM4 on node 5 is the optimal solution.

VIII.CONCLUSION AND FUTURE WORK
In this paper, we presented NICE, which is proposed to detect and
mitigate collaborative attacks in the cloud virtual networking
environment. NICE utilizes the attack graph model to conduct
attack detection and prediction. The proposed solution
investigates how to use the programmability of software switches
based solutions to improve the detection accuracy and defeat
victim exploitation phases of collaborative attacks. The system
performance evaluation demonstrates the feasibility of NICE and
shows that the proposed solution can significantly reduce the risk
of the cloud system from being exploited and abused by internal
and external attackers. NICE only investigates the network IDS
approach to counter zombie explorative attacks. In order to
improve the detection accuracy, host-based IDS solutions are
needed to be incorporated and to cover the whole spectrum of IDS
in the cloud system. This should be investigated in the future
work. Additionally, as indicated in the paper, we will investigate
the scalability of the proposed NICE solution by investigating the
decentralized network control and attack analysis model based on
current study.

REFERENCES
[1] Coud Sercurity Alliance, “Top threats to cloud computing

v1.0,”https://cloudsecurityalliance.org/topthreats/csathreats.v1.0.pdf,
March 2010.

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A.
Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M.
Zaharia “A view of cloud computing,” ACM Commun., vol. 53, no.
4, pp. 50–58, Apr. 2010.

[3] B. Joshi, A. Vijayan, and B. Joshi, “Securing cloud computing
environment against DDoS attacks,” IEEE Int’l Conf. Computer
Communication and Informatics (ICCCI ’12), Jan. 2012.

[4] H. Takabi, J. B. Joshi, and G. Ahn, “Security and privacy challenges in
cloud computing environments,” IEEE Security & Privacy, vol. 8,
no. 6, pp. 24–31, Dec. 2010.

[5] “Open vSwitch project,” http://openvswitch.org, May 2012.
[6] Z. Duan, P. Chen, F. Sanchez, Y. Dong, M. Stephenson, and J. Barker,

“Detecting spam zombies by monitoring outgoing messages,” IEEE
Trans. Dependable and Secure Computing, vol. 9, no. 2, pp. 198–
210, Apr. 2012. IEEE TRANSACTIONS ON DEPEDABLE AND
SECURE COMPUTING

[7] G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee, “BotHunter:
detecting malware infection through IDS-driven dialog correlation,”
Proc. of 16th USENIX Security Symp. (SS ’07), pp. 12:1–12:16, Aug.
2007.

[8] G. Gu, J. Zhang, and W. Lee, “BotSniffer: detecting botnet command
and control channels in network traffic,” Proc. of 15th Ann. Network
and Distributed Sytem Security Symp. (NDSS ’08), Feb. 2008.

[9] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. M. Wing,
“Automated generation and analysis of attack graphs,” Proc. IEEE
Symp. on Security and Privacy, 2002, pp. 273–284.

[10]“NuSMV: A new symbolic model checker,” http://afrodite.itc.it:
1024/∼numb. Aug. 2012.

[11] S. H. Ahmadinejad, S. Jalili, and M. Abadi, “A hybrid model for
correlating alerts of known and unknown attack scenarios and
updating attack graphs,” Computer Networks, vol. 55, no. 9, pp.
2221–2240, Jun. 2011.

[12] S. Roschke, F. Cheng, and C. Meinel, “A new alert correlation
algorithm based on attack graph,” Computational Intelligence in
Security for Information Systems, LNCS, vol. 6694, pp. 58–67.
Springer, 2011.

[15] A. Roy, D. S. Kim, and K. Trivedi, “Scalable optimal countermeasure
selection using implicit enumeration on attack countermeasure
trees,” Proc. IEEE Int’l Conf. on Dependable Systems Networks
(DSN ’12), Jun. 2012.

[16] “Open flow.” http://www.openflow.org/wp/learnmore/, 2012.

A.JensilinMary et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1333-1337

www.ijcsit.com 1337

